翻訳と辞書
Words near each other
・ Spherical category
・ Spherical code
・ Spherical contact distribution function
・ Spherical coordinate system
・ Spherical cow
・ Spherical design
・ Spherical Earth
・ Spherical function
・ Spherical geometry
・ Spherical Harmonic
・ Spherical harmonic lighting
・ Spherical harmonics
・ Spherical image
・ Spherical law of cosines
・ Spherical mean
Spherical measure
・ Spherical model
・ Spherical multipole moments
・ Spherical neutron polarimetry
・ Spherical nucleic acid
・ Spherical Objects (band)
・ Spherical packing
・ Spherical pendulum
・ Spherical polyhedron
・ Spherical robot
・ Spherical roller bearing
・ Spherical roller thrust bearing
・ Spherical sector
・ Spherical segment
・ Spherical shell


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Spherical measure : ウィキペディア英語版
Spherical measure
In mathematics — specifically, in geometric measure theory — spherical measure ''σ''''n'' is the “natural” Borel measure on the ''n''-sphere S''n''. Spherical measure is often normalized so that it is a probability measure on the sphere, i.e. so that ''σ''''n''(S''n'') = 1.
==Definition of spherical measure==

There are several ways to define spherical measure. One way is to use the usual “round” or “arclengthmetric ''ρ''''n'' on S''n''; that is, for points ''x'' and ''y'' in S''n'', ''ρ''''n''(''x'', ''y'') is defined to be the (Euclidean) angle that they subtend at the centre of the sphere (the origin of R''n''+1). Now construct ''n''-dimensional Hausdorff measure ''H''''n'' on the metric space (S''n'', ''ρ''''n'') and define
:\sigma^ = \frac^)} H^.
One could also have given S''n'' the metric that it inherits as a subspace of the Euclidean space R''n''+1; the same spherical measure results from this choice of metric.
Another method uses Lebesgue measure ''λ''''n''+1 on the ambient Euclidean space R''n''+1: for any measurable subset ''A'' of S''n'', define ''σ''''n''(''A'') to be the (''n'' + 1)-dimensional volume of the “wedge” in the ball B''n''+1 that it subtends at the origin. That is,
:\sigma^(A) := \frac \lambda^ ( \ ),
where
:\alpha(m) := \lambda^ (\mathbf_^ (0)).
The fact that all these methods define the same measure on S''n'' follows from an elegant result of Christensen: all these measures are obviously uniformly distributed on S''n'', and any two uniformly distributed Borel regular measures on a separable metric space must be constant (positive) multiples of one another. Since all our candidate ''σ''''n''’s have been normalized to be probability measures, they are all the same measure.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Spherical measure」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.